Add like
Add dislike
Add to saved papers

Rostro-dorsal and rostro-lateral skull morphologic variability in three age-groups of the Egyptian mongoose (Herpestes ichneumon) (Linnaeus, 1758): implications of certain orbital parameters - angular geometric approach.

This study evaluated 30 skulls of the grey mongoose divided into three age-groups (6 pups, 10 juveniles and 14 adults) for skull shape variability determination. Specific geometric shapes were drawn from defined points. Angular geometric measurements of shapes derived from rostro-dorsal and rostro-lateral parts of the skull included; orbital angles (with and without the mandible), comprising of viscero-cranium, skull and orbital index that was calculated to evaluate the correlations, if any, with angles measured. It was observed that orbital height and width became higher with age; there was stronger correlation in this regard between pups and juveniles compared with juveniles and adults. There is a reduction (narrowing) in BrEcEc, BrEcN, EcPEc, EcEnN and NwNNw angles with concomitant enlargement of BrEcP, BrEcN, EcNEc, EnNEn, EcNNw and EnNP with age. The decline in the skull index shows a decrease in rate of skull width growth relative to rostro-facial length and demonstrates non-proportionality to zygoma bowing. Significantly varied orbital parameters include the inter-canthii distance and implications of certain significant variables observed in some geometric orbital measurements of the tropical mongoose (Herpestes ichneumon). The survey hypothesizes the observations follow typical carnivoran phylogenic affinity, differentiates this species from similar herpestid versions and is an estimation of functional morphology with respect to bite size. It is further suggested to contribute to visual acuity in timing of bite delivery as well an adaptation in prey summarisation. This study will serve as baseline information in herpestid cranial investigations. Such facial features are useful in population studies, species identification, eco-migrant species surveillance and species ontogenic evolution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app