Add like
Add dislike
Add to saved papers

Maturation of Adipocytes is Suppressed by Fluid Shear Stress.

Preadipocytes are mechano-responsive cells and their differentiation to adipocytes may be regulated by various types of physical stimulation. Understanding the mechanism of differentiation, which increases the number of adipocytes and lipid accumulation is important in the study of obesity-related diseases. In this study, we investigated the effects of physical stimulation at different stages of adipogenic differentiation using physiological levels of fluid shear stress. Preadipocytes were treated with dexamethasone, 3-isobutyl-1-methylxanthine and insulin for 3 days (induction period) and incubated for additional 6 days for maturation. Fluid shear stress of 1 Pa at 1 Hz was applied for 1 h at different stages of differentiation. Fluid shear stress applied at the maturation period significantly reduced the expressions of C/enhancer binding protein (EBP)α and peroxisome proliferator-activated receptor (PPAR)γ2 leading to reduced lipid accumulation. Fluid shear stress applied at the early or late stages of the induction period only decreased peroxisome proliferator-activated receptor γ2 expression without any significant changes in lipid accumulation. Stimulation at multiple days during the induction period did not result in changes in lipid accumulation compared to stimulation at a single day. These results suggest that lipid droplet accumulation is effectively decreased by fluid shear stress applied during the cell maturation period. Understanding the cellular response to physical stimulation throughout the entire adipocyte differentiation period may be important in controlling adipogenesis by physical stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app