Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

IRBP deficiency permits precocious ocular development and myopia.

PURPOSE: Interphotoreceptor retinoid-binding protein (IRBP) is abundant in the subretinal space and binds retinoids and lipophilic molecules. The expression of IRBP begins precociously early in mouse eye development. IRBP-deficient (KO) mice show less cell death in the inner retinal layers of the retina before eyelid opening compared to wild-type C57BL/6J (WT) controls and eventually develop profound myopia. Thus, IRBP may play a role in eye development before visually-driven phenomena. We report comparative observations during the course of the natural development of eyes in WT and congenic IRBP KO mice that suggest IRBP is necessary at the early stages of mouse eye development for correct function and development to exist in later stages.

METHODS: We observed the natural development of congenic WT and IRBP KO mice, monitoring several markers of eye size and development, including haze and clarity of optical components in the eye, eye size, axial length, immunohistological markers of differentiation and eye development, visually guided behavior, and levels of a putative eye growth stop signal, dopamine. We conducted these measurements at several ages. Slit-lamp examinations were conducted at post-natal day (P)21. Fundus and spectral domain optical coherence tomography (SD-OCT) images were compared at P15, P30, P45, and P80. Enucleated eyes from P5 to P10 were measured for weight, and ocular dimensions were measured with a noncontact light-emitting diode (LED) micrometer. We counted the cells that expressed tyrosine hydroxylase (TH-positive cells) at P23-P36 using immunohistochemistry on retinal flatmounts. High-performance liquid chromatography (HPLC) was used to analyze the amounts of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) at P7-P60. Monocular form deprivation in the right eye was induced using head-mounted goggles from P28 to P56.

RESULTS: Eye elongation and eye size in the IRBP KO mice began to increase at P7 compared to the WT mice. This difference increased until P12, and the difference was maintained thereafter. SD-OCT images in live mice confirmed previously reported retinal thinning of the outer nuclear layer in the IRBP KO mice compared to the WT mice from P15 to P80. Slit-lamp and fundoscopy examination outcomes did not differ between the WT and KO mice. SD-OCT measurements of the optical axis components showed that the only factor contributing to excess optical axis length was the depth of the vitreous body. No other component of optical axis length (including corneal thickness, anterior chamber depth, and lens thickness) was different from that of the WT mouse. The refractive power of the IRBP KO mice did not change in response to form deprivation. The number of retinal TH-positive cells was 28% greater in the IRBP KO retinas compared to the WT mice at P30. No significant differences were observed in the steady-state retinal DA or DOPAC levels or in the DOPAC/DA ratios between the WT and IRBP KO mice.

CONCLUSIONS: The IRBP KO mouse eye underwent precocious development and rapid eye size growth temporally about a day sooner than the WT mouse eye. Eye size began to differ between the WT and KO mice before eyelid opening, indicating no requirement for focus-dependent vision, and suggesting a developmental abnormality in the IRBP KO mouse eye that precedes form vision-dependent emmetropization. Additionally, the profoundly myopic KO eye did not respond to form deprivation compared to the non-deprived contralateral eye. Too much growth occurred in some parts of the eye, possibly upsetting a balance among size, differentiation, and focus-dependent growth suppression. Thus, the loss of IRBP may simply cause growth that is too rapid, possibly due to a lack of sequestration or buffering of morphogens that normally would bind to IRBP but are unbound in the IRBP KO eye. Despite the development of profound myopia, the DA levels in the IRBP KO mice were not statistically different from those in the WT mice, even with the excess of TH-positive cells in the IRBP KO mice compared to the WT mice. Overall, these data suggest that abnormal eye elongation in the IRBP KO mouse is independent of, precedes, and is epistatic to the process(es) of visually-driven refractive development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app