EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Self-assembled polymeric nanoparticles film stabilizing gold nanoparticles as a versatile platform for ultrasensitive detection of carcino-embryonic antigen.

In this work, a novel impedimetric immunosensor was developed based on electrophoretic deposition of polymeric self-assembled nanoparticles for the sensitive determination of carcino-embryonic antigen (CEA). Biocompatible polymeric nanoparticles γ-PGA-DA@CS were prepared by self-assembly of chitosan (CS) and dopamine modified poly(γ-glutamic acid) (γ-PGA-DA) under mild conditions. A dense and nanostructured nanoparticles film was obtained on the electrode surface by electrophoretic deposition of γ-PGA-DA@CS nanoparticles. Gold nanoparticles (Au NPs) were then tightly anchored on γ-PGA-DA@CS film with homogeneous dispersion due to numerous exposed dopamine adhesive dots present on the surface of γ-PGA-DA@CS. The obtained Au/γ-PGA-DA@CS nanocomposite film not only increases the electrode surface area in nanoscale dimension, but also provides a highly stable and biocompatible matrix for the convenient conjugation of antibody, thus providing a high-efficiency immunoassay platform. Monoclonal antibodies to carcinoembryonic antigen (CEA-Ab) were effectively immobilized on the Au/γ-PGA-DA@CS film and a label-free impedimetric immunosensor was fabricated successfully as the ultimate goal. Under optimal conditions, the resultant immunosensor exhibited a wide linear range from 2.0×10(-14)gmL(-1) to 2.0×10(-8)gmL(-1) for the detection of CEA with a low detection limit of 10fgmL(-1). To the best of our knowledge, this was the lowest detection limit compared with other counterparts of label-free impedimetric immunosensors. Moreover, the immunosensor showed high specificity, good stability and satisfactory reproducibility. As a proof of concept, the proposed strategy provided a promising and versatile platform for clinical immunoassay of other tumor markers and biomolecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app