Add like
Add dislike
Add to saved papers

Effects of novobiocin and methotrexate on the benthic amphipod Ampelisca brevicornis exposed to spiked sediments.

The marine amphipod Ampelisca brevicornis was used as model organism of benthic macrofauna to assess the possible adverse effects of pharmaceuticals bound to sediments. Organisms were exposed to sediment spiked with novobiocin (NOV) and methotrexate (MTX) for 10 days in order to estimate the acute toxicity (lethal effects) produced by the two compounds. The surviving organisms were pooled and analyzed to determine their sublethal responses associated with different phases of metabolism (enzyme activities in phases I and II), oxidative stress (antioxidant enzyme activities and lipid peroxidation), and genotoxicity (DNA damage in the form of strand breaks). No lethal or sublethal effects were observed in the amphipods exposed to NOV. For organisms exposed to sediments spiked with MTX the results were found to calculate the concentration that was lethal to 50% of the organisms exposed in the toxicity tests (LC50 of 30.36 ng/g). MTX also induced the metabolism of enzyme detoxification activities in phases I and II. Oxidative stress and DNA damage in particular were also observed, indicating responses associated with MTX's mechanism of action. Both mortality and the set of applied biomarkers allowed for the assessment of bioavailability, oxidative stress, and genotoxicity of NOV and MTX. The information obtained in this investigation can assist in ecological risk assessment of marine sediments contaminated by pharmaceuticals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app