Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

ATF3 modulates calcium signaling in osteoclast differentiation and activity by associating with c-Fos and NFATc1 proteins.

Bone 2017 Februrary
Activating transcription factor 3 (ATF3), a member of the ATF/cAMP response element-binding protein family of transcription factors, has been implicated in the regulation of cell proliferation and differentiation. However, whether ATF3 is involved in osteoclast differentiation and activity has not been well-studied. In the present study, we examined the role of ATF3 in osteoclast differentiation and function. ATF3 expression was down-regulated during RANKL-induced osteoclast differentiation. Overexpression of ATF3 in bone marrow-derived monocyte/macrophage lineage cells (BMMs) promoted osteoclast differentiation and activity and strongly induced the expression of osteoclast genes encoding nuclear factor of activated T-cells c1 (NFATc1) and tartrate-resistant acid phosphatase (TRAP) compared to that in the control group. In contrast, small interfering RNA-mediated knockdown of ATF3 prevented the formation of multinucleated osteoclasts and markedly abrogated the expression of osteoclast marker genes. Mechanistically, ATF3 synergistically enhanced c-Fos- or NFAT-mediated transcriptional activity of the NFATc1 or TRAP promoter, respectively. Furthermore, ATF3 physically interacted with c-Fos and NFATc1 and enhanced the binding affinity of c-Fos and NFATc1 to the promoters. Interestingly, ATF3 is involved in calcium signaling during osteoclastogenesis. Taken together, these results suggest that ATF3 is a new co-factor of c-Fos and NFATc1 to activate osteoclast differentiation and activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app