Add like
Add dislike
Add to saved papers

Crosslinked, cryostructured Lactobacillus reuteri monoliths for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol.

Journal of Biotechnology 2017 January 11
Crosslinked, cryostructured monoliths prepared from Lactobacillus reuteri cells were evaluated as potential immobilized whole-cell biocatalyst for conversion of glycerol, to potentially important chemicals for the biobased industry, i.e. 3-hydroxypropionaldehyde (3HPA), 3-hydroxypropionic acid (3HP) and 1,3-propanediol (1,3PDO). Glutaraldehyde, oxidized dextran and activated polyethyleneimine/modified polyvinyl alcohol (PEI/PVA) were evaluated as crosslinkers; the latter gave highly stable preparations with maintained viability and biocatalytic activity. Scanning electron microscopy of the PEI/PVA monoliths showed high density of crosslinked cells with wide channels allowing liquid flow through. Flux analysis of the propanediol-utilization pathway, incorporating glycerol/diol dehydratase, propionaldehyde dehydrogenase, 1,3PDO oxidoreductase, phosphotransacylase, and propionate kinase, for conversion of glycerol to the three chemicals showed that the maximum specific reaction rates were -562.6, 281.4, 62.4 and 50.5mg/gCDW h for glycerol consumption, and 3HPA (extracellular), 3HP and 1,3PDO production, respectively. Under optimal conditions using monolith operated as continuous plug flow reactor, 19.7g/L 3HPA was produced as complex with carbohydrazide at a rate of 9.1g/Lh and a yield of 77mol%. Using fed-batch operation, 1,3PDO and 3HP were co-produced in equimolar amounts with a yield of 91mol%. The monoliths embedded in plastic carriers showed high mechanical stability under different modes in a miniaturized plug flow reactor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app