Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Determinants of body composition in breastfed infants using bioimpedance spectroscopy and ultrasound skinfolds-methods comparison.

BACKGROUND: Accurate, noninvasive, and inexpensive methods are required to measure infant body composition. Ultrasound (US) and bioimpedance spectroscopy (BIS) have been validated in adults and introduced in pediatric populations. The aim of this study was to evaluate the performance of both methods in determining percentage fat mass (%FM) in breastfed infants.

METHODS: %FM of 2, 5, 9, and 12 mo-old healthy, breastfed term infants (n = 58) was calculated using BIS-derived total body water equations and skinfold equations then compared with reference models. Skinfolds were measured with US at two and four sites (biceps, suprailiac and/or triceps, and subscapular).

RESULTS: %FM differed widely within and between methods, with the degree of variation affected by infant age/sex. Not a single method/equation was consistent with the distributions of appropriate reference values for all age/sex groups. Moderate number of matches with references values (13-24 out of 36) was seen for both types of equations. High number of matches (25-36) was seen for US skinfold-based equations. %FM values calculated from US and BIS were not significantly different (P = 0.35).

CONCLUSION: Both BIS and US are practical for predicting %FM in infants. BIS calculations are highly dependent upon an appropriate set of validated age-matched equations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app