Add like
Add dislike
Add to saved papers

Nonlinear polarization evolution of hybridly polarized vector beams through isotropic Kerr nonlinearities.

Optics Express 2016 October 32
Structured intense laser interacting with matter will result in a variety of novel nonlinear optical effects, modulate the light propagation behavior, and change the structural property of a material. In this work, we theoretically investigate the spatial self-phase modulation (SSPM) effect, nonlinear ellipse rotation, and spin angular momentum (SAM) flux redistribution of hybridly polarized vector beams through isotropic Kerr nonlinearities. Experimentally, we observe the SSPM effect of the femtosecond-pulsed hybridly polarized vector beam in carbon disulfide at 800 nm, which is in agreement with the theoretical predictions. Our results show that the SSPM intensity pattern, the distribution of state of polarization (SoP), and the SAM flux of a hybridly polarized vector beam could be manipulated by tuning the isotropic optical nonlinearity, which may find interesting applications in nonlinear mechanism analysis, nonlinear optical characterization, and SAM manipulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app