Add like
Add dislike
Add to saved papers

Extreme field enhancement in nano-gap plasmonic cavity via 90% efficient coupling with silicon waveguide.

Optics Express 2016 October 32
We propose a novel design for a sub-5-nm-gap plasmonic cavity to couple it efficiently with an integrated low loss silicon waveguide. We numerically obtain over 90% efficient coupling between a nano-gap plasmonic cavity with a modal volume of less than 10<sup>-7</sup>λ<sup>3</sup> and a conventional silicon-on-insulator (SOI) waveguide by utilizing the anti-symmetric second-order resonance mode of the cavity and engineering its geometry to reduce the modal size to less than 5 nm. The electromagnetic field efficiently coupled to the small cavity, leading to extreme enhancement of the field intensity. For a 2-nm-gap cavity, the intensity enhancement was calculated to be more than 100,000,000 compared to that of light in an SOI waveguide.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app