Add like
Add dislike
Add to saved papers

Modeling hemispherical reflectance for natural surfaces based on terrestrial laser scanning backscattered intensity data.

Optics Express 2016 October 4
Independent of instrumental properties and scanning geometry, target reflectance is significantly important for terrestrial laser scanning (TLS) data processing and utilization, especially in multi-temporal and multi-sensor cases. In addition to the 3D topographic coordinates, TLS systems also record the backscattered intensity value of each point that provides additional information on the reflectance characteristics of the scanned surface. However, a number of confounding variables, particularly the distance and incidence angle, distort the ability of the original intensity to directly retrieve the target reflectance. This study proposes a new method to model the hemispherical reflectance of natural surfaces from the TLS intensity data by eliminating the effects of incidence angle and distance. The incidence angle effect is corrected by the Oren-Nayar reflectance model which takes individual surface roughness into account whereas the irregular distance effect is eliminated by reference targets without estimating the specific distance-intensity function. The Faro Focus<sup>3D</sup> 120 terrestrial scanner is utilized in the case study. Six typical natural surfaces are chosen as the experimental objects. Results imply that the proposed method exhibits high accuracy in retrieving reflectance values. The deviation of the retrieved reflectance values from that measured by a spectrometer is approximately 4.29% and the root mean square error (RMSE) is approximately 0.0562.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app