Add like
Add dislike
Add to saved papers

Quantification of cerebral lateral ventricular volume in cats by low- and high-field MRI.

Objectives The aim of this study was to evaluate variations in lateral ventricles in the examined feline population with the use of quantitative analysis methods to determine whether sex or body weight influenced the size of the ventricles, and to identify any significant differences in the results of low- and high-field MRI. Methods Twenty healthy European Shorthair cats, aged 1-3 years, with body weights ranging from 2.85-4.35 kg, were studied. MRI of brain structures was performed in a low- and a high-field MRI system. The height of the brain and lateral ventricles at the level of the interthalamic adhesion, and volume of the lateral ventricles were determined in T2-weighted images in the transverse plane. The degree of symmetry of lateral ventricles was analysed based on the ratio of right to left ventricular volume. The measured parameters were processed statistically to determine whether sex and body weight were significantly correlated with variations in ventricular anatomy. The results of low- and high-field MRI were analysed to evaluate for any significant differences. Results The average brain height was determined to be 27.79 mm, and the average height of the left and right ventricles were 2.98 mm and 2.89 mm, respectively. The average ventricle/brain height ratio was 10.61%. The average volume of the left ventricle was 134.12 mm3 and the right ventricle was 130.49 mm3 . Moderately enlarged ventricles were observed in two cats. Moderate ventricular asymmetry was described in four cats. Sex and body weight had no significant effect on the evaluated parameters. The differences in the results of low- and high-field MRI were not statistically significant. Conclusions and relevance This study has determined reference intervals for ventricular volume in a population of European Shorthair cats without brain disease, which will facilitate the interpretation of MRI images and the characterisation of brain abnormalities in cats with neurological disease. Further research involving larger animal populations, including other breeds, is required to compare the measured parameters between breeds and to determine reference values for other breeds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app