Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Maternal High Estradiol Exposure is Associated with Elevated Thyroxine and Pax8 in Mouse Offspring.

Scientific Reports 2016 November 10
Our previous studies have shown that maternal high estradiol (E2 ) environment increased the risk of thyroid dysfunction in offspring. However, the mechanism involved remains unexplored. To evaluate the thyroid function of offspring after high E2 exposure and to explore the underlying mechanism, we established a high E2 mouse model of early pregnancy, and detected thyroid hormones of their offspring. In thyroids of offspring, the expressions of Tg, Nis, Tpo, Pax8, and Titf1 and CpG island methylation status of Pax8 and genes involved in methylation were analyzed. We found that thyroxine (T4) and FT4 levels of offspring were obviously increased in the high-E2 group, especially in females. In both 3- and 8-week-old offspring of the high-E2 group, Pax8 was significantly up-regulated in thyroid glands, accompanied by the abnormal CpG island methylation status in the promoter region. Furthermore, Dnmt3a and Mbd1 were obviously down-regulated in thyroids of the high E2 group. Besides, the disturbance of thyroid function in females was more severe than that in males, implying that the effects were related to gender. In summary, our study indicated that maternal high E2 exposure disturbed the thyroid function of offspring through the dysregulation and abnormal DNA methylation of Pax8.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app