Add like
Add dislike
Add to saved papers

Influence analysis for the behavior of dewaterability of excess sludge in a two-stage vermifilter.

To improve excess sludge dewaterability, a two-stage vermifilter was developed to qualitatively and quantitatively analyze sludge physico-chemical properties (fractal dimension, zeta potential, extracellular polymeric substances (EPS), particle size distribution, etc.) and to correlate them with sludge dewatering characteristics (specific resistance to filtration (SRF) and capillary suction time (CST)). Results demonstrated that sludge dewatering performance was significantly improved after the primary vermifilter VF1 and the second-stage vermifilter VF2. In addition, the further VF2 treatment exhibited higher effects on sludge dewatering performance. The particle boundary of sludge after VF2 treatment was clearer and smoother than VF1 sludge (VF1S), apart from the fact that sludge morphological structure got denser and more compact. Comparing with VF1S, the fractal dimension D1 calculated within 1D topological space was closer to 1 after VF2 treatment, and the fractal dimension D2 within 2D topological space closer to 2, indicating a better dewatering performance after VF2 treatment. Additionally, the changes of sludge floc surface properties (such as zeta potential and EPS) resulted in small particles agglomerating into larger ones and then the increase of particle diameter. In summary, the two-stage vermifilter got a better sludge dewatering performance, and thus beneficial for subsequent processing of sludge.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app