Add like
Add dislike
Add to saved papers

Anaerobic ammonium oxidation in sediments of surface flow constructed wetlands treating swine wastewater.

Anaerobic ammonium oxidation (anammox) was suggested to be involved in the nitrogen (N) removal process in constructed wetlands (CWs). Nevertheless, its occurrence and role in CWs treating swine wastewater have not been well evaluated yet. In this study, we investigated the diversity, activity, and role of anammox bacteria in sediments of mesoscale surface flow CWs (SFCWs) subjected to different N loads of swine wastewater. We found that anammox bacteria were abundant in SFCW sediments, as indicated by 7.5 × 10(5) to 3.5 × 10(6) copies of the marker hzsB gene per gram of dry soil. Based on stable isotope tracing, potential anammox rates ranged from 1.03 to 12.5 nmol N g(-1) dry soil h(-1), accounting for 8.63-57.1% of total N2 production. We estimated that a total N removal rate of 0.83-2.68 kg N year(-1) was linked to the anammox process, representing ca. 10% of the N load. Phylogenetic analyses of 16S ribosomal RNA (rRNA) revealed the presence of multiple co-occurring anammox genera, including "Candidatus Brocadia" as the most common one, "Ca. Kuenenia," "Ca. Scalindua," and four novel unidentified clusters. Correlation analyses suggested that the activity and abundance of anammox bacteria were strongly related to sediments pH, NH4(+)-N, and NO2(-)-N. In conclusion, our results confirmed the presence of diverse anammox bacteria and indicated that the anammox process could serve as a promising N removal pathway in the treatment of swine wastewater by SFCWs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app