Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ovarian hormone depletion affects cortical bone quality differently on different skeletal envelopes.

Bone 2017 Februrary
The physical properties of bone tissue are determined by the organic and mineral matrix, and are one aspect of bone quality. As such, the properties of mineral and matrix are a major contributor to bone strength, independent of bone mass. Cortical bone quality may differ regionally on the three skeletal envelopes that compose it. Each of these envelopes may be affected differently by ovarian hormone depletion. Identifying how these regions vary in their tissue adaptive response to ovarian hormones can inform our understanding of how tissue quality contributes to overall bone strength in postmenopausal women. We analyzed humeri from monkeys that were either SHAM-operated or ovariectomized. Raman microspectroscopic analysis was performed as a function of tissue age based on the presence of multiple fluorescent double labels, to determine whether bone compositional properties (mineral/matrix ratio, tissue water, glycosaminoglycan, lipid, and pyridinoline contents, and mineral maturity/crystallinity) are similar between periosteal, osteonal, and endosteal surfaces, as well as to determine the effects of ovarian hormone depletion on them. The results indicate that mineral and organic matrix characteristics, and kinetics of mineral and organic matrix modifications as a function of tissue age are different at periosteal vs. osteonal and endosteal surfaces. Ovarian hormone depletion affects the three cortical surfaces (periosteal, osteonal, endosteal) differently. While ovarian hormone depletion does not significantly affect the quality of either the osteoid or the most recently mineralized tissue, it significantly affects the rate of subsequent mineral accumulation, as well as the kinetics of organic matrix modifications, culminating in significant differences within interstitial bone. These results highlight the complexity of the cortical bone compartments, add to existing knowledge on the effects of ovarian hormone depletion on local cortical bone properties, and may contribute to a better understanding of the location specific action of drugs used in the management of postmenopausal osteoporosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app