Add like
Add dislike
Add to saved papers

New insights into the molecular mechanisms of chemical carcinogenesis: In vivo adduction of histone H2B by a reactive metabolite of the chemical carcinogen furan.

Toxicology Letters 2016 December 16
Furan is a rodent hepatocarcinogen ubiquitously found in the environment and heat-processed foods. Furan undergoes cytochrome P450 2E1-catalyzed bioactivation to cis-2-butene-1,4-dial (BDA), which has been shown to form an electrophilic conjugate (GSH-BDA) with glutathione. Both BDA and GSH-BDA yield covalent adducts with lysine residues in proteins. Dose- and time-dependent epigenetic histone alterations have been observed in furan-treated rats. While the covalent modification of histones by chemical carcinogens has long been proposed, histone-carcinogen adducts have eluded detection in vivo. In this study, we investigated if the covalent modification of histones by furan may occur in vivo prior to epigenetic histone alterations. Using a "bottom-up" methodology, involving the analysis of tryptic peptides by liquid chromatography - high resolution mass spectrometry, we obtained evidence for a cross-link between GSH-BDA and lysine 107 of histone H2B isolated from the livers of male F344 rats treated with tumorigenic doses of furan. This cross-link was detected at the shortest treatment period (90 days) in the lowest dose group (0.92mg/kg body weight/day), prior to the identification of epigenetic changes, and occurred at a lysine residue that is a target for epigenetic modifications and crucial for nucleosome stability. Our results represent the first unequivocal proof of the occurrence of carcinogen-modified histones in vivo and suggest that such modification happens at the initial stages of furan-induced carcinogenesis. This type of alteration may be general in scope, opening new insights into the mechanisms of chemical carcinogenesis/toxicity and new opportunities for the development of early compound-specific biomarkers of exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app