COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Short-term molecular and physiological responses to heat stress in neritic copepods Acartia tonsa and Eurytemora affinis.

Invertebrates inhabiting shallow water habitats represent particularly appropriate organisms for studying the acclimation potential to environmental stress, since they naturally experience large fluctuations in key abiotic factors such as temperature and salinity. We quantified the biochemical- (mRNA transcripts of 78-kDa glucose-regulated protein (grp78), 70-kDa heat shock protein (hsp70), 90-kDa heat shock protein (hsp90), protein synthesis of HSP70) and organismal- (oxygen consumption rates) level responses to acute heat stress on two neritic copepods (Acartia tonsa and Eurytemora affinis) with special emphasis on the role of short-term acclimation. Transcripts of hsp increased with increasing acute temperature exposure and protein quantities (HSP70) were detectable for 30h. In A. tonsa, HSP70 synthesis was also associated with handling stress. In E. affinis, heat-dependent responses were detected in hsp90, grp78 (mRNA) and HSP70 (protein) expression. Acclimation to a warmer temperature significantly decreased the heat stress response in both species. In A. tonsa, short-term acclimation to heat was not detected at the organismal level via metabolic rate. This study reveals interspecific differences in both the gene expression of stress molecules (e.g. hsp90) as well as the stress factors needed to evoke a stress response (heat vs. handling). We demonstrate that cellular stress markers can be useful measures of short-term thermal acclimation in copepods, which may remain undetected by organismal-level measures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app