Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Effects of Functional Electrical Stimulation on Reducing Falls and Improving Gait Parameters in Multiple Sclerosis and Stroke.

BACKGROUND: Loss of neuromuscular control of the ankle joint is a common impairment in neurologic conditions, leading to abnormal gait and a greater risk of falling. Limited information, however, is available on the effectiveness of functional electrical stimulation (FES) on reducing falls, and no studies have investigated its usefulness in improving lower limbs kinematics related to foot clearance and energy recovery.

SETTING: Clinical setting.

STUDY DESIGN: Prospective longitudinal study.

PARTICIPANTS: Twenty-four subjects, 14 people with multiple sclerosis (mean age ± standard deviation 50.93 ± 8.72 years) and 10 people with stroke (55.38 ± 14.55 years).

METHODS: The number of falls was assessed at baseline and after 8 weeks, and a clinical assessment was performed at the baseline, 4-week, and 8-week time points. A subsample of the 24 subjects comprising 5 people with multiple sclerosis and 5 people with stroke performed a gait analysis assessment at baseline and after 4 weeks. After receiving the equipment and the training schedule, subjects performed daily home walking training using FES for 8 weeks.

MAIN OUTCOME MEASUREMENTS: The main outcomes were (1) the number of falls, (2) foot clearance, and (3) energy recovery.

RESULTS: A reduction in the number of falls was observed from baseline (n = 10) to the 8-week assessment (n = 2), P = .02. Foot clearance increased (+5.26 mm, P = .04) between the baseline without FES and at 4 weeks with FES (total effect). No statistically significant differences were found in energy recovery between baseline and 4 weeks.

CONCLUSIONS: The use of FES had an impact on gait, specifically reducing the number of falls and improving walking. A specific effect at the ankle joint was observed, increasing foot clearance during the swing phase of gait. This effect was not accompanied with a reduction in the energetic expenditure during walking in subjects with multiple sclerosis and stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app