Add like
Add dislike
Add to saved papers

A novel hybrid sensor for combined imaging of dissolved oxygen and labile phosphorus flux in sediment and water.

Water Research 2017 January 2
A novel sensor assembled by a hybrid film was developed for 2D combined measurements of DO dynamic and labile P flux in sediment and water at sub-millimeter resolution based on PO and DGT techniques. The hybrid film is comprised of a transparent polyester membrane supporting two ultrathin sensing layers, i.e., a P binding layer (PBL) overlying a DO sensing layer (DSL). A robust, straightforward measuring strategy based on the referenced RGB and coloration-computer imaging densitometry (CID) methods was developed. Sensing properties for DO show a considerable homogeneity (RSD < 5%) and rapid response (<24 s) in fluorescent response. Calibration experiments reveal the sensitivity values for the DSL without/with PBL are 2.12/1.95, with an acceptable bias of less than 8%. The optimized PBL possesses a uniform distribution of zirconium-oxide microparticles at a relatively high DGT capacity (10.8 μg P cm-2 ), in which the distribution of adsorbed-P can be imaged by the coloration-CID method. The performance of the sensor is compared to two conventional PO and DGT sensors. The hybrid sensor was successfully deployed in three types of benthic micro-interface and showed significant small-scale heterogeneity, providing new opportunities for advancing investigations into relevant biogeochemical processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app