Add like
Add dislike
Add to saved papers

High-level expression of a ZEN-detoxifying gene by codon optimization and biobrick in Pichia pastoris.

The mycotoxin zearalenone (ZEN) can be degraded by a lactone hydrolase ZHD, which was derived from Gliocladium roseum. Here, based on the native ZHD encoding gene zhd101, a codon optimized zhd gene was synthesized, which was used for high expression of ZHD in Pichia pastoris GS115. Meanwhile, to further improve the expression of recombinant ZHD, the plasmids containing 1 to 4 copies of the zhd expression cassette were constructed, respectively, using the biobrick method. The protein expression in the recombinant P. pastoris X3c, which was transformed with the plasmid containing 3 copies of zhd expression cassette, was the highest. In addition, the enzymatic activity of ZHD against ZEN was defined for the first time based on a standard curve of peak area vs ZEN concentration. The ZEN degradation activity of ZHD from shake flask fermentation was calculated as 22.5U/mL with the specific activity of 4976.5U/mg. Furthermore, the high-density fermentation of P. pastoris X3c strain was also performed in 5L fermenter. The maximum enzyme activity of the supernatant was 150.1U/mL, which were 6.7-fold higher than that of the shake flask fermentation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app