Add like
Add dislike
Add to saved papers

The Effect of Patient Diameter on the Dual-Energy Ratio of Selected Contrast-Producing Elements.

OBJECTIVES: The aim of this study was to assess whether the low- to high-kVp computed tomography (CT) number ratio at dual-energy CT is affected by changes in patient diameter.

METHODS: Seven contrast-producing elements were housed sequentially within an abdomen phantom. Fat rings enlarged the phantom diameter from 26 to 44 cm. The phantom was scanned using single-energy CT at tube potentials of 80 and 140 kVp and rapid-kVp-switching dual-energy CT.

RESULTS: CT numbers decreased proportionally (∼20% CT number reduction for smallest to largest phantom diameters) for low- and high-energy acquisitions but resulted in consistent dual-energy ratios for each contrast element. For 17 of 21 material pair combinations, the dual-energy ratio ranges of the two elements did not overlap, implying that discrimination should remain possible for these material pairs at all patient sizes.

CONCLUSIONS: The dual-energy ratio for different contrast materials is largely unaffected by changes in phantom diameter. This should allow for robust separation of most contrast material combinations irrespective of patient size.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app