Add like
Add dislike
Add to saved papers

Electronic structure characterization of an individual single-walled carbon nanotube by in situ electrochemical surface-enhanced Raman scattering spectroscopy.

Nanoscale 2016 December 8
We present an electronic structural analysis of an individual single-walled carbon nanotube (SWNT) by employing electrochemical surface-enhanced Raman scattering (SERS). An isolated SWNT was supported on a well-defined Au nanodimer structure, which possesses a localized surface plasmon resonance (LSPR) field at the nanogap, and highly intense SERS spectra were obtained for the SWNT at the gap region. The absolute potential of the Fermi level of the isolated SWNT in an ionic liquid was determined from the electrochemical potential dependence of the SERS intensity showing the dependence on the chirality of SWNTs. The electronic structural change in an isolated SWNT by ozone oxidation treatment was also analyzed. The results indicate that the electrochemical SERS technique is a powerful tool for detailed analysis of the electronic structure of isolated SWNTs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app