Add like
Add dislike
Add to saved papers

Transportation and transformation of mercury in a calcine profile in the Wanshan Mercury Mine, SW China.

Calcination of Hg ores has resulted in serious contamination of mercury (Hg) in the environment. To understand the mobilization of Hg in the calcine pile, the speciation of Hg in a profile of a large calcine pile in the Wanshan Mercury Mine, SW China was investigated using the X-ray absorption spectroscopy (XANES), to understand the mobilization of Hg in the calcine pile. Higher concentrations of Hg were observed at the 30-50 cm depth of the profile, corresponding to a cemented layer. This layer is observed in the entire pile, and was formed due to cementation of calcines. Hg species in calcines include cinnabar (α-HgS), metacinnabar (β-HgS), elemental Hg(0), and minor mercuric chloride (HgCl2 ), but these Hg species show dramatic changes in the profile. Variations in Hg speciation suggest that extensive mobilization of Hg can occur during weathering processes. We show that the cemented layer can prevent the leaching of Hg and the emission of Hg(0) from the pile. High MeHg concentrations were found near the cemented layer, indicating Hg methylation occurs. This study provides important insights into the environmental risk of Hg in mining areas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app