Add like
Add dislike
Add to saved papers

Differential Gene Expression of Three Mastitis-Causing Escherichia coli Strains Grown under Planktonic, Swimming, and Swarming Culture Conditions.

MSystems 2016 July
Bacterial motility is thought to play an important role in virulence. We have previously shown that proficient bacterial swimming and swarming in vitro is correlated with the persistent intramammary infection phenotype observed in cattle. However, little is known about the gene regulation differences important for different motility phenotypes in Escherichia coli. In this work, three E. coli strains that cause persistent bovine mastitis infections were grown in three media that promote different types of motility (planktonic, swimming, and swarming). Using whole-transcriptome RNA sequencing, we identified a total of 935 genes (~21% of the total genome) that were differentially expressed in comparisons of the various motility-promoting conditions. We found that approximately 7% of the differentially expressed genes were associated with iron regulation. We show that motility assays using iron or iron chelators confirmed the importance of iron regulation to the observed motility phenotypes. Because of the observation that E. coli strains that cause persistent infections are more motile, we contend that better understanding of the genes that are differentially expressed due to the type of motility will yield important information about how bacteria can become established within a host. Elucidating the mechanisms that regulate bacterial motility may provide new approaches in the development of intervention strategies as well as facilitate the discovery of novel diagnostics and therapeutics. IMPORTANCE Bacteria can exhibit various types of motility. It is known that different types of motilities can be associated with virulence. In this work, we compare gene expression levels in bacteria that were grown under conditions that promoted three different types of E. coli motility. Better understanding of the mechanisms of how bacteria can cause an infection is an important first step to better diagnostics and therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app