Add like
Add dislike
Add to saved papers

Nuclear TBLR1 as an ER corepressor promotes cell proliferation, migration and invasion in breast and ovarian cancer.

Estrogen receptors (ER) play important roles in the development and progression of breast and ovarian cancers. ERs mediate transcriptional regulation through interaction with cofactors and binding to response elements within the regulatory elements of target genes. Here, we examined the expression and function of TBLR1/TBL1XR1, a core component of NCoR (nuclear receptor corepressor) and SMRT (silencing mediator of retinoic acid and thyroid receptor) corepressor complexes, in breast and ovarian cancers. We found that although TBLR1 is present in both the nucleus and cytoplasm of normal and neoplastic breast and ovarian cells, it is expressed at significantly higher levels in the nucleus of malignant breast and ovarian cells compared to benign cells. TBLR1 functions as an ER corepressor to inhibit ER-mediated transcriptional activation in both breast and ovarian cell lines, but it has no effect on androgen receptor (AR) mediated transcriptional activation in these cells. Furthermore, ectopic expression of nuclear TBLR1 in breast and ovarian cancer cells stimulates cell proliferation. The increased cell proliferation by nuclear TBLR1 is through both ER-independent and ER-dependent mechanisms as evidenced by increased growth in hormone-free medium and estrogen medium, as well as reduced growth with ER knockdown by siRNA. Nuclear TBLR1 overexpression also increased migration and invasion in both breast and ovarian cancer cells. Determining the functional relationship between TBLR1 and ER may provide insights to develop novel treatment strategies and improve response to hormonal therapy in breast and ovarian cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app