Add like
Add dislike
Add to saved papers

Modulating wall shear stress gradient via equilateral triangular channel for in situ cellular adhesion assay.

Biomicrofluidics 2016 September
This study introduces an equilateral triangular channel (ETRIC), a novel microfluidic channel with an equilateral triangular cross-section, for cell adhesion assay by modulating the wall shear stress (WSS) gradient. The channel can generate a parabolic WSS gradient perpendicular to the flow direction at a single flow rate, and cell detachment can be in situ screened in response to spatially different levels of WSS. The existence of a simple form of exact solution for the velocity field inside the entire ETRIC region enables the easy design and modulation of the WSS levels at the bottom surface; therefore, the detachment of the cells can be investigated at the pre-defined observation window in real time. The exact solution for the velocity field was validated by comparing the analytical velocity profile with those obtained from both numerical simulation and experimental particle image velocimetry. The parabolic WSS gradient can be generated stably and consistently over time at a steady-state condition and easily modulated by changing the flow rate for the given ETRIC geometry. The WSS gradient in the ETRIC is in a symmetric parabolic form, and this symmetry feature doubles the experimental data, thereby efficiently minimizing the number of experiments. Finally, a WSS gradient ranging from 0 to 160 dyn/cm(2) was generated through the present ETRIC, which enables not only to measure the adhesion strength but also to investigate the time-dependent detachment of NIH-3T3 cells attached on the glass.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app