Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

In situ solid-state electrochemistry of mass-selected ions at well-defined electrode-electrolyte interfaces.

Molecular-level understanding of electrochemical processes occurring at electrode-electrolyte interfaces (EEIs) is key to the rational development of high-performance and sustainable electrochemical technologies. This article reports the development and application of solid-state in situ thin-film electrochemical cells to explore redox and catalytic processes occurring at well-defined EEIs generated using soft-landing (SL) of mass- and charge-selected cluster ions. In situ cells with excellent mass-transfer properties are fabricated using carefully designed nanoporous ionic liquid membranes. SL enables deposition of pure active species that are not obtainable with other techniques onto electrode surfaces with precise control over charge state, composition, and kinetic energy. SL is, therefore, demonstrated to be a unique tool for studying fundamental processes occurring at EEIs. Using an aprotic cell, the effect of charge state ([Formula: see text]) and the contribution of building blocks of Keggin polyoxometalate (POM) clusters to redox processes are characterized by populating EEIs with POM anions generated by electrospray ionization and gas-phase dissociation. Additionally, a proton-conducting cell has been developed to characterize the oxygen reduction activity of bare Pt clusters (Pt30 ∼1 nm diameter), thus demonstrating the capability of the cell for probing catalytic reactions in controlled gaseous environments. By combining the developed in situ electrochemical cell with ion SL we established a versatile method to characterize the EEI in solid-state redox systems and reactive electrochemistry at precisely defined conditions. This capability will advance the molecular-level understanding of processes occurring at EEIs that are critical to many energy-related technologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app