Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Oxidative Stress in Granulosa-Lutein Cells From In Vitro Fertilization Patients.

Reproductive Sciences 2016 December
Ovarian aging is associated with gradual follicular loss by atresia/apoptosis. Increased production of toxic metabolites such as reactive oxygen species (ROS) and reactive nitrogen species as well as external oxidant agents plays an important role in the process of ovarian senescence and in the pathogenesis of ovarian pathologies such as endometriosis and polycystic ovary syndrome (PCOS). This review provides a synthesis of available studies of oxidative stress (OS) in the ovary, focusing on the most recent evidence obtained in mural granulosa-lutein (GL) cells of in vitro fertilization patients. Synthesis of antioxidant enzymes such as peroxiredoxin 4, superoxide dismutase, and catalase and OS damage response proteins such as aldehyde dehydrogenase 3, member A2 decreases with aging in human GL cells, favoring an unbalance in ROS/antioxidants that mediates molecular damage and altered cellular function. The increase in OS in the granulosa cell correlates with diminished expression of follicle-stimulating hormone receptor (FSHR) and a dysregulation of the FSHR signaling pathway and may be implicated in disrupted steroidogenic function and poor response to FSH in women with aging. Women with endometriosis and PCOS have lower antioxidant production capacity that may contribute to abnormal follicular development and infertility. Further investigation of the signaling pathways involved in cellular response to OS could shed light into molecular characterization of these diseases and development of new treatment strategies to improve reproductive potential in these women.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app