Add like
Add dislike
Add to saved papers

Transparent, wear-resistant, superhydrophobic and superoleophobic poly(dimethylsiloxane) (PDMS) surfaces.

Superoleophobic surfaces that exhibit self-cleaning, antifouling, low-drag, and anti-smudge properties with high transparency are of interest in industrial applications including optical devices, solar panels, and self-cleaning windows. In many superoleophobic surfaces created to date, the lack of mechanical durability has been an issue. In this work, for the first time, transparent, wear-resistant, superhydrophobic and superoleophobic surfaces were developed for polydimethylsiloxane (PDMS) using a simple and scalable fabrication technique. PDMS is of importance in biomedical applications as it is biocompatible, chemically stable, and transparent. PDMS was made superhydrophobic either through micropatterning or an applied coating of hydrophobic SiO2 nanoparticles with a binder of methylphenyl silicone resin. Through the addition of fluorination via fluorosilane, the nanoparticle/binder coating was made superoleophobic. Intermediate steps using ultraviolet-ozone treatment were required for improved deposition and adhesion of the coatings. The effects of surface treatments were examined through contact angle and tilt angle measurements. The coating was found to have re-entrant geometries desirable for superoleophobicity and to exhibit mechanical wear resistance and transparent properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app