Add like
Add dislike
Add to saved papers

Fabrication of high-density BiFeO 3 nanodot and anti-nanodot arrays by anodic alumina template-assisted ion beam etching.

Nanotechnology 2016 December 3
Efficient and cost-competitive fabrication of high-quality ferroelectric and multiferroic nanostructures is of general interest. In this work, a top-down nano-patterning technique is developed by the Ar+ ion beam etching in combination with the sacrificed ultrathin anodic alumina (AAO) mask. This technique is demonstrated by preparation of the epitaxial BiFeO3 (BFO) nanostructures of various geometries, including nanodot and anti-nanodot arrays. The lateral dot size is as small as ∼60 nm and an ultrahigh dot density of ∼60 Gbit/inch2 is achieved. It is revealed that the etching process involves sequential shape evolution of both the AAO mask and the underlying BFO film, resulting in the nanodots and anti-nanodots arrays of various geometries. The as-etched BFO nanodots array exhibits well-established ferroelectric domain structures and reversible polarization switching, as examined by piezoresponse force microscopy (PFM). It is suggested that this technique is extendable to fabrication of a wide range of functional oxide nanostructures for potential nanoelectronic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app