JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Engineering of Escherichia coli for direct and modulated biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer using unrelated carbon sources.

Scientific Reports 2016 November 8
While poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] is a biodegradable commodity plastic with broad applications, its microbial synthesis is hindered by high production costs primarily associated with the supplementation of related carbon substrates (e.g. propionate or valerate). Here we report construction of engineered Escherichia coli strains for direct synthesis of P(3HB-co-3HV) from an unrelated carbon source (e.g. glucose or glycerol). First, an E. coli strain with an activated sleeping beauty mutase (Sbm) operon was used to generate propionyl-CoA as a precursor. Next, two acetyl-CoA moieties or acetyl-CoA and propionyl-CoA were condensed to form acetoacetyl-CoA and 3-ketovaleryl-CoA, respectively, by functional expression of β-ketothiolases from Cupriavidus necator (i.e. PhaA and BktB). The resulting thioester intermediates were channeled into the polyhydroxyalkanoate (PHA) biosynthetic pathway through functional expression of acetoacetyl-CoA reductase (PhaB) for thioester reduction and PHA synthase (PhaC) for subsequent polymerization. Metabolic engineering of E. coli host strains was further conducted to enhance total PHA content and the 3-hydroxyvaleryl (3HV) monomer fraction in the copolymer. Using a selection of engineered E. coli strains for batch cultivation with an unrelated carbon source, we achieved high-level P(3HB-co-3HV) production with the 3HV monomer fraction ranging from 3 to 19 mol%, demonstrating the potential industrial applicability of these whole-cell biocatalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app