Add like
Add dislike
Add to saved papers

Polyamines-induced aluminum tolerance in mung bean: A study on antioxidant defense and methylglyoxal detoxification systems.

Ecotoxicology 2017 January
We investigated the roles of exogenously applied Spd (0.3 mM spermidine) in alleviating Al (AlCl3, 0.5 mM, 48 and 72 h)- induced injury in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Aluminum toxicity induced oxidative damage overproducing reactive oxygen species (ROS; H2O2 and O2(•-)), increasing lipoxygenase activity and membrane lipid peroxidation. The toxic compound methylglyoxal (MG) also overproduced under Al stress. In order to circumvent Al-induced oxidative stress, enzymatic and non-enzymatic antioxidant defense were activated by the application of exogenous Spd. Exogenous Spd increased ascorbate (AsA) and glutathione (GSH) content, AsA/dehydroascorbate (DHA) ratio, GSH/ glutathione disulfide (GSSG) ratio, activity of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase (CAT) which reduced ROS production and oxidative stress under Al stress. Spd-induced improvement of GSH pool and Gly II activity alleviated injurious effects of MG. Exogenous Spd positively modulated the endogenous PAs level. Regulating the osmoprotectant molecule (proline), Spd improved plant water status under Al stress. Exogenous Spd was potent to prevent breakdown of Al-induced photosynthetic pigment and to improve growth performances under Al stress. The mechanism by which Spd enhances antioxidant and glyoxalase components might be studied extensively. Spermidine-induced protection of photosynthetic pigment from damages and growth enhancement were remarkable and recommended for further detailed study to understand the mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app