Add like
Add dislike
Add to saved papers

Agrobacterium-mediated transient expression via root absorption in flowering Chinese cabbage.

BACKGROUND: Because most transient transformation techniques are inadequate for functional genomics research in roots, we aimed to develop a simple and efficient Agrobacterium-mediated transient transformation system that utilized root absorption for research in flowering Chinese cabbage.

RESULTS: Both semi-quantitative and fluorescent quantitative RT-PCR confirmed that the target gene BcAMT1;3 was more highly expressed in plants that were infected with the transformed Agrobacterium strain (EHA105-p35S-BcAMT1;3) than in control plants that were infected with the control strain (EHA105-p35S). Furthermore, GUS staining analysis conformed the availability of this transient transformation system. In addition, we found that the highest transformation efficiency was achieved using an Agrobacterium cell density of OD600 = 0.3 for 3-6 h, without hyperosmotic pretreatment, and under these conditions, the peak transformation efficiency was observed at 2 and 4 d after infection.

CONCLUSIONS: The transformation method developed by the present study is simple and convenient, since no special equipment is required, and since the method causes no damage, the plants can be used for subsequent experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app