Add like
Add dislike
Add to saved papers

A near-infrared "turn-on" fluorescent probe with a self-immolative linker for the in vivo quantitative detection and imaging of hydrogen sulfide.

Hydrogen sulfide is a critical biological messenger, but few biologically compatible methods are available for its detection in vivo. Here, we describe the design and synthesis of a novel azide-functionalized near-infrared probe, NIR-Az, for a hydrogen sulfide assay in which a self-immolative linker is incorporated between the azide moiety and phenolic dihydroxanthene fluorophore from a cyanine dye. A large "turn-on" near-infrared fluorescence signal results from the reduction of the azide group of the fluorogenic moiety to an amine, in which the self-immolative linker also enhances the accessibility of NIR-Az to hydrogen sulfide. NIR-Az can select hydrogen sulfide from among 16 analytes, including cysteine, glutathione, and homocysteine. By exploiting the superior properties of NIR-Az, such as its good biocompatibility and rapid cell internalization, we successfully demonstrated its usefulness in monitoring both the concentration- and time-dependent variations of hydrogen sulfide in living cells and animals (detection limit less than 0.26μM), thereby providing a powerful approach for probing hydrogen sulfide chemistry in biological systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app