Add like
Add dislike
Add to saved papers

Neuroplasticity Associated With Anterior Cruciate Ligament Reconstruction.

Study Design Controlled laboratory study. Background Anterior cruciate ligament (ACL) injury may result in neuroplastic changes due to lost mechanoreceptors of the ACL and compensations in neuromuscular control. These alterations are not completely understood. Assessing brain function after ACL injury and anterior cruciate ligament reconstruction (ACLR) with functional magnetic resonance imaging provides a means to address this gap in knowledge. Objective To compare differences in brain activation during knee flexion/extension in persons who have undergone ACLR and in matched controls. Methods Fifteen participants who had undergone left ACLR (38.13 ± 27.16 months postsurgery) and 15 healthy controls matched on age, sex, height, mass, extremity dominance, education level, sport participation, and physical activity level participated. Functional magnetic resonance imaging data were obtained during a unilateral knee motor task consisting of repeated cycles of knee flexion and extension. Results Participants who had undergone ACLR had increased activation in the contralateral motor cortex, lingual gyrus, and ipsilateral secondary somatosensory area and diminished activation in the ipsilateral motor cortex and cerebellum when compared to healthy matched controls. Conclusion Brain activation for knee flexion/extension motion may be altered following ACLR. The ACLR brain activation profile may indicate a shift toward a visual-motor strategy as opposed to a sensory-motor strategy to engage in knee movement. Level of Evidence Cohort, level 3. J Orthop Sports Phys Ther 2017;47(3):180-189. Epub 5 Nov 2016. doi:10.2519/jospt.2017.7003.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app