Add like
Add dislike
Add to saved papers

Assessment of contamination based on trace element concentrations in Gomphus flavipes (Odonata: Insect) larvae of the Upper Tisza Region.

Odonata larvae are frequently used to assess the contamination of aquatic systems, because they tolerate a wide range of chemical and biological conditions in freshwater systems. In early 2000, the sediments of the Hungarian section of the River Tisza and the River Szamos were strongly enriched with heavy metals by an accidental mining spill. Earlier studies demonstrated higher contamination levels in the Szamos than in the Tisza, based on sediment analysis. The aim of our study was to assess the contamination in the Upper Tisza Region, along the upper reach of the Tisza, and the lower reach of the Szamos, based on the trace element concentrations of the Gomphus flavipes larvae. We collected 269 dragonfly specimens for the analyses. The Al, Ba, Cr, Cu, Fe, Mn, Pb, Sr and Zn element contents were analysed in the dragonfly larvae by microwave plasma atomic emission spectrometry (MP-AES). Significantly higher Ba and Cu concentrations were found in the dragonfly larvae of the Tisza than the Szamos. In spite of this, the Cr, Mn, Pb, Sr and Zn concentration was significantly lower in the dragonfly larvae of the Tisza than the Szamos. For all trace elements significant differences were found along the Tisza. Significant differences were also found in all trace element concentrations of dragonfly larvae among studied localities in the Szamos, except in the cases of Al and Ba. Our results demonstrated that the Szamos was more contaminated with Cr, Mn, Pb, Sr and Zn than the Tisza, but that the Tisza was more contaminated with Ba and Cu than the Szamos, based on the trace element concentrations in Gomphus flavipes larvae, which was likely to have been caused by the tributaries of the Tisza. In summary, our results indicated a continuous pollution of the Tisza and the Szamos and their tributaries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app