Add like
Add dislike
Add to saved papers

Development and evaluation of topotecan loaded solid lipid nanoparticles: A study in cervical cancer cell lines.

The study aims at statistical development of solid lipid nanoparticles (SLNs) loaded with topotecan hydrochloride for avoiding the drawbacks of conventional drug therapies used in cervical cancer. Twenty SLN batches were prepared using organic solvent evaporation method to provide response surface curves. Thereafter, optimized SLNs were obtained using numeric method based on desirability functions providing maximum drug loading and appropriate particle size. Physical characterization of optimized TPH loaded SLNs was performed in terms of particle size, zeta potential, transmission and scanning electron microscopic evaluation. Cytotoxicity studies were performed against cervical cancer cell lines, including cervical squamous cell carcinoma cell line (HeLa) and human squamous cell carcinoma cell line (SiHa). Also, Swiss mouse embryo fibroblast cells (3T3-L1) and African green monkey kidney epithelial (Vero) cells were used to evaluate biocompatibility in normal cells. As pronounced from the results, optimized SLNs may provide an attractive alternative to conventional cervical cancer drug products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app