Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cognitive decline in type 2 diabetic db/db mice may be associated with brain region-specific metabolic disorders.

Type 2 diabetes has been associated with cognitive decline, but its metabolic mechanism remains unclear. In the present study, we attempted to investigate brain region-specific metabolic changes in db/db mice with cognitive decline and explore the potential metabolic mechanism linking type 2 diabetes and cognitive decline. We analyzed the metabolic changes in seven brain regions of two types of mice (wild-type mice and db/db mice with cognitive decline) using a 1 H NMR-based metabolomic approach. Then, a mixed-model analysis was used to evaluate the effects of mice type, brain region, and their interaction on metabolic changes. Compared with the wild-type mice, the db/db mice with cognitive decline had significant increases in lactate, glutamine (Gln) and taurine as well as significant decreases in alanine, aspartate, choline, succinate, γ-Aminobutyric acid (GABA), glutamate (Glu), glycine, N-acetylaspartate, inosine monophosphate, adenosine monophosphate, adenosine diphosphate, and nicotinamide adenine dinucleotide. Brain region-specific metabolic differences were also observed between these two mouse types. In addition, we found significant interaction effects of mice type and brain region on creatine/phosphocreatine, lactate, aspartate, GABA, N-acetylaspartate and taurine. Based on metabolic pathway analysis, the present study suggests that cognitive decline in db/db mice might be linked to a series of brain region-specific metabolic changes, involving an increase in anaerobic glycolysis, a decrease in tricarboxylic acid (TCA) and Gln-Glu/GABA cycles as well as a disturbance in lactate-alanine shuttle and membrane metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app