Add like
Add dislike
Add to saved papers

Molecular Network Dynamics of Cell Cycle Control: Periodicity of Start and Finish.

The cell division cycle is controlled by a complex regulatory network which ensures that the phases of the cell cycle are executed in the right order. This regulatory network receives signals from the environment, monitors the state of the DNA, and decides timings of cell cycle events. The underlying transcriptional and post-translational regulatory interactions lead to complex dynamical responses, such as the oscillations in the levels of cell cycle proteins driven by intertwined biochemical reactions. A cell moves between different phases of its cycle similar to a dynamical system switching between its steady states. The complex molecular network driving these phases has been investigated in previous computational systems biology studies. Here, we review the critical physiological and molecular transitions that occur in the cell cycle and discuss the role of mathematical modeling in elucidating these transitions and understand cell cycle synchronization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app