Add like
Add dislike
Add to saved papers

Early Non-invasive Detection of Acute 1,2-Dichloroethane-induced Toxic Encephalopathy in Rats.

In Vivo 2016 November
AIM: To assess the acute effect of 1,2-dichloroethane (1,2-DCE) on rat brain using diffusion magnetic resonance imaging (dMRI).

MATERIALS AND METHODS: We performed dMRI on 30 male Sprague-Dawley rats, microstructural alterations were investigated by calculating the mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) changes in eight selected brain regions of interest. For the whole brain, clusters of 20+ voxels that differed significantly in FA and ADC between groups were marked. Hematoxylin-eosin staining was performed to confirm pathological changes.

RESULTS: Brain images showed lesions with brain edema in the white matter in both hemispheres in all groups exposed to 1,2-DCE. Diffusivity values were significantly different after 1,2-DCE inhalation (p<0.05).

CONCLUSION: Primarily cytotoxic edema occurred in acute 1,2-DCE-induced brain edema in rats. dMRI could be used for the early non-invasive detection of acute 1,2-DCE-induced toxic encephalopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app