Add like
Add dislike
Add to saved papers

A new beating-heart mitral and aortic valve assessment model with implications for valve intervention training.

Objectives: A thorough understanding of mitral and aortic valve motion dynamics is essential in mastering the skills necessary for performing successful valve intervention (open or transcatheter repair or replacement). We describe a reproducible and versatile beating-heart mitral and aortic valve assessment and valve intervention training model in human cadavers.

Methods: The model is constructed by bilateral ligation of the pulmonary veins, ligation of the supra-aortic arteries, creating a shunt between the descending thoracic aorta and the left atrial appendage with a vascular prosthesis, anastomizing a vascular prosthesis to the apex and positioning an intra-aortic balloon pump (IABP) in the vascular prosthesis, cross-clamping the descending thoracic aorta, and finally placing a fluid line in the shunt prosthesis. The left ventricle is filled with saline to the desired pressure through the fluid line, and the IABP is switched on and set to a desired frequency (usually 60-80 bpm). Prerepair valve dynamic motion can be studied under direct endoscopic visualization. After assessment, the IABP is switched off, and valve intervention training can be performed using standard techniques.

Results: This high-fidelity simulation model has known limitations, but provides a realistic environment with an actual beating (human) heart, which is of incremental value. The model provides a unique opportunity to fill a beating heart with saline and to study prerepair mitral and aortic valve dynamic motion under direct endoscopic visualization.

Conclusions: The entire set-up provides a versatile beating-heart mitral and aortic valve assessment model, which may have important implications for future valve intervention training.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app