Add like
Add dislike
Add to saved papers

Optic pathway glioma volume predicts retinal axon degeneration in neurofibromatosis type 1.

Neurology 2016 December 7
OBJECTIVE: To determine whether tumor size is associated with retinal nerve fiber layer (RNFL) thickness, a measure of axonal degeneration and an established biomarker of visual impairment in children with optic pathway gliomas (OPGs) secondary to neurofibromatosis type 1 (NF1).

METHODS: Children with NF1-OPGs involving the optic nerve (extension into the chiasm and tracts permitted) who underwent both volumetric MRI analysis and optical coherence tomography (OCT) within 2 weeks of each other were included. Volumetric measurement of the entire anterior visual pathway (AVP; optic nerve, chiasm, and tract) was performed using high-resolution T1-weighted MRI. OCT measured the average RNFL thickness around the optic nerve. Linear regression models evaluated the relationship between RNFL thickness and AVP dimensions and volume.

RESULTS: Thirty-eight participants contributed 55 study eyes. The mean age was 5.78 years. Twenty-two participants (58%) were female. RNFL thickness had a significant negative relationship to total AVP volume and total brain volume (p < 0.05, all comparisons). For every 1 mL increase in AVP volume, RNFL thickness declined by approximately 5 microns. A greater AVP volume of OPGs involving the optic nerve and chiasm, but not the tracts, was independently associated with a lower RNFL thickness (p < 0.05). All participants with an optic chiasm volume >1.3 mL demonstrated axonal damage (i.e., RNFL thickness <80 microns).

CONCLUSIONS: Greater OPG and AVP volume predicts axonal degeneration, a biomarker of vision loss, in children with NF1-OPGs. MRI volumetric measures may help stratify the risk of visual loss from NF1-OPGs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app