JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Chemopreventive Effects of ROS Targeting in a Murine Model of BRCA1-Deficient Breast Cancer.

Cancer Research 2017 January 16
There remains great interest in practical strategies to limit the elevated risks of familial breast and ovarian cancers driven by BRCA1 mutation. Here, we report that limiting the production of reactive oxygen species (ROS) is sufficient to reduce DNA lesions and delay tumorigenesis in a murine model of BRCA1-deficient breast cancer. We documented a large amount of endogenous estrogen oxidative metabolites in the mammary gland of the model, which induced DNA adducts and apurinic/apyrimidinic sites associated with DNA double-strand breaks and genomic instability. Repressing estrogen oxidation via antioxidant treatments reduced oxidative DNA lesions and delayed the onset of mammary tumors. Overall our work suggests an answer to the long-standing question of why germline BRCA1 mutations cause tissue-specific tumors, in showing how tissue-specific, ROS-induced DNA lesions create a nongenetic force to promote mammary tumors in BRCA1-deficient mice. Our findings create a rationale for evaluating suitable antioxidant modalities as a chemopreventive strategy for familial breast cancer. Cancer Res; 77(2); 448-58. ©2016 AACR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app