Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control.

Journal of Biomechanics 2016 December 9
Simple, lumped-parameter musculoskeletal models may be more adaptable and practical for clinical real-time control applications, such as prosthesis control. In this study, we determined whether a lumped-parameter, EMG-driven musculoskeletal model with four muscles could predict wrist and metacarpophalangeal (MCP) joint flexion/extension. Forearm EMG signals and joint kinematics were collected simultaneously from 5 able-bodied (AB) subjects. For one subject with unilateral transradial amputation (TRA), joint kinematics were collected from the sound arm during bilateral mirrored motion. Twenty-two model parameters were optimized such that joint kinematics predicted by EMG-driven forward dynamic simulation closely matched measured kinematics. Cross validation was employed to evaluate the model kinematic predictions using Pearson׳s correlation coefficient (r). Model predictions of joint angles were highly to very highly positively correlated with measured values at the wrist (AB mean r=0.94, TRA r=0.92) and MCP (AB mean r=0.88, TRA r=0.93) joints during single-joint wrist and MCP movements, respectively. In simultaneous multi-joint movement, the prediction accuracy for TRA at the MCP joint decreased (r=0.56), while r-values derived from AB subjects and TRA wrist motion were still above 0.75. Though parameters were optimized to match experimental sub-maximal kinematics, passive and maximum isometric joint moments predicted by the model were comparable to reported experimental measures. Our results showed the promise of a lumped-parameter musculoskeletal model for hand/wrist kinematic estimation. Therefore, the model might be useful for EMG control of powered upper limb prostheses, but more work is needed to demonstrate its online performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app