Add like
Add dislike
Add to saved papers

Optimization of recombinant β-NGF expression in Escherichia coli using response surface methodology.

Human nerve growth factor a member of the neurotrophin family can be used to treat neurodegenerative diseases. As it has disulfide bonds in its structure, periplasmic expression of it using appropriate signal sequence is beneficial. Therefore, in this work β-nerve growth factor (β-NGF) was expressed in Escherichia coli using pET39b expression vector containing DsbA signal sequence. In an initial step, the effect of isopropyl β-D-1-thiogalactopyranoside (IPTG) and lactose concentration as inducer on protein production was investigated using response surface methodology. Then the effect of different postinduction time and temperature on protein production was studied. Our results indicated that the highest β-NGF production was achieved with 1 mM IPTG and low concentrations of lactose (0-2% w/v), low cultivation temperature of 25°C and postinduction time of 2 hr. Also following β-NGF purification, bioassay test using PC12 cell line was done. The biological activity of the purified β-NGF showed a similar cell proliferation activity with the standard recombinant human β-NGF. In conclusion, the results indicated an optimized upstream process to obtain high yields of biologically active β-NGF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app