Add like
Add dislike
Add to saved papers

16S rRNA gene-based characterization of bacteria potentially associated with phosphate and carbonate precipitation from a granular autotrophic nitrogen removal bioreactor.

A bench-scale granular autotrophic nitrogen removal bioreactor (completely autotrophic nitrogen removal over nitrite (CANON) system) used for the treatment of synthetic wastewater was analyzed for the identification of microbiota with potential capacity for carbonate and phosphate biomineral formation. 16S ribosomal RNA (rRNA) gene-based studies revealed that different bacterial species found in the granular biomass could trigger the formation of phosphate and calcite minerals in the CANON bioreactor. iTag analysis of the microbial community in the granular biomass with potential ability to precipitate calcium carbonate and hydroxyapatite constituted around 0.79-1.32 % of total bacteria. Specifically, the possible hydroxyapatite-producing Candidatus Accumulibacter had a relative abundance of 0.36-0.38 % and was the highest phosphate-precipitating bacteria in the granular CANON system. With respect to calcite precipitation, the major potential producer was thought to be Stenotrophomonas with a 0.38-0.50 % relative abundance. In conclusion, our study showed evidences that the formation of hydroxyapatite and calcite crystals inside of the granular biomass of a CANON system for the treatment wastewater with high ammonium concentration was a biological process. Therefore, it could be suggested that microorganisms play an important role as a precipitation core and also modified the environment due to their metabolic activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app