Add like
Add dislike
Add to saved papers

Molecular Characterization of Hypoxic Alveolar Epithelial Cells After Lung Contusion Indicates an Important Role for HIF-1α.

Annals of Surgery 2018 Februrary
OBJECTIVE: To understand the fate and regulation of hypoxic type II alveolar epithelial cells (AECs) after lung contusion (LC).

BACKGROUND: LC due to thoracic trauma is a major risk factor for the development of acute respiratory distress syndrome. AECs have recently been implicated as a primary driver of inflammation in LC. The main pathological consequence of LC is hypoxia, and a key mediator of adaptation to hypoxia is hypoxia-inducible factor (HIF)-1. We have recently published that HIF-1α is a major driver of acute inflammation after LC through type II AEC.

METHODS: LC was induced in wild-type mice (C57BL/6), luciferase-based hypoxia reporter mice (ODD-Luc), and HIF-1α conditional knockout mice. The degree of hypoxia was assessed using hypoxyprobe and in vivo imaging system. The fate of hypoxic AEC was evaluated by luciferase dual staining with caspases-3 and Ki-67, terminal deoxynucleotidyl transferase dUTP nick end labeling, and flow cytometry with ApoStat. NLRP-3 expression was determined by western blot. Laser capture microdissection was used to isolate AECs in vivo, and collected RNA was analyzed by Q-PCR for HIF-related pathways.

RESULTS: Global hypoxia was present after LC, but hypoxic foci were not uniform. Hypoxic AECs preferentially undergo apoptosis. There were significant reductions in NLRP-3 in HIF-1α conditional knockout mice. The expression of proteins involved in HIF-related pathways and inflammasome activation were significantly increased in hypoxic AECs.

CONCLUSIONS: These are the first in vivo data to identify, isolate, and characterize hypoxic AECs. HIF-1α regulation through hypoxic AECs is critical to the initiation of acute inflammation after LC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app