Add like
Add dislike
Add to saved papers

Conformational differences and intermolecular C-H...N interactions in three polymorphs of a bis(pyridinyl)-substituted benzimidazole.

The structural characterization of several polymorphic forms of a compound allow the interplay between molecular conformation and intermolecular interactions to be studied, which can contribute to the development of strategies for the rational preparation of materials with desirable properties and the tailoring of intermolecular interactions to produce solids with predictable characteristics of interest in crystal engineering. The crystal structures of two new polymorphs of 5,6-dimethyl-2-(pyridin-2-yl)-1-[(pyridin-2-yl)methyl]-1H-benzimidazole, C20 H18 N4 , are reported. The previously reported polymorph, (1) [Geiger & DeStefano (2014). Acta Cryst. E70, o365], exhibits the space group C2/c, whereas polymorphs (2) and (3) presented here are in the Pnma and P-1 space groups, respectively. The molecular structures of the three forms differ in their orientations of the 2-(pyridin-2-yl)- and 1-[(pyridin-2-yl)methyl]- substituents. Density functional theory (DFT) calculations show that the relative energies of the molecule in the three conformations follows the order (1) < (2) < (3), with a spread of 10.6 kJ mol-1 . An analysis of the Hirshfeld surfaces shows that the three polymorphs exhibit intermolecular C-H...N interactions, which can be classified into six types. Based on DFT calculations involving pairs of molecules having the observed interactions, the C-H...N energy in the systems explored is approximately -11.2 to -14.4 kJ mol-1 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app