Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Serine Synthesis Helps Hypoxic Cancer Stem Cells Regulate Redox.

Cancer Research 2016 November 16
Phosphoglycerate dehydrogenase (PHGDH) is the metabolic enzyme responsible for shunting the glycolytic intermediate 3-phosphoglycerate to the serine synthesis pathway. In breast cancer and several other types of cancer, increased PHGDH expression is associated with patient mortality. Early studies focused on the role of PHGDH in promoting cell proliferation in the small percentage of breast cancers with PHGDH gene amplification. However, recent studies have revealed a critical role for PHGDH and downstream enzymes of the serine synthesis pathway and one carbon metabolism in NADPH production and the maintenance of redox homeostasis, which are required for enrichment of breast cancer stem cells in response to hypoxia or chemotherapy. These results provide a mechanism for PHGDH overexpression in breast cancers in which PHGDH is not amplified and have implications for improving the response of triple-negative breast cancers to cytotoxic chemotherapy. Cancer Res; 76(22); 6458-62. ©2016 AACR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app